

STICKSTOFF-FEDERUNGSSYSTEME

INHALT	2
Grundlagen des Stickstoff-Speicherplatten-Systems	3
Federkennlinien und Diagramme	4-5
Standardfederungszylinder Typ CDS 0.3 - 20 (3,3 - 200 kN)	6
Auf Grundplatte montierte Federungszylinder Typ CDSP 0.3 - 20 (3,3 - 200 kN)	7
Federungszylinder mit niedriger Bauhöhe Typ CDSN 0.3 - 10 (3,3 - 100 kN)	8
Federungszylinder in Flachbauweise Typ CDSK 1.0 - 5.5 (10 - 55 kN)	9
Federungszylinder Typ CDSF 1.0 - 5.5	10
Ersatzteilliste	11
Konstruktionsrichtlinien für Speicherplatten	12-14
Gebohrte Speichertanks Typ NPT 102 - NPT 103, Speichertanks mit Schraubdeckel Typ TE	ONR 15
TÜV-geprüfte Speichertanks Typ NPT 5 - NPT 10 (bis zu 100 Litern Inhalt)	16
Kontrollarmaturen	17-18
Volumenberechnung	19
Verschlussstopfen und Berstsicherungen	20
Verschraubungen und Schläuche	21-22
Flaschendruckminderer	23

GRUNDLAGEN DES STICKSTOFF-SPEICHERPLATTEN-SYSTEMS

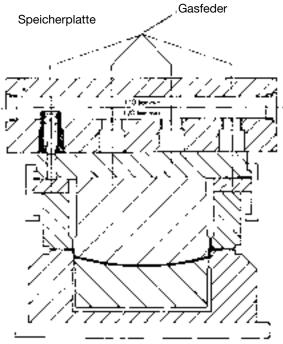
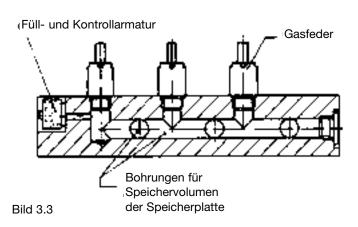


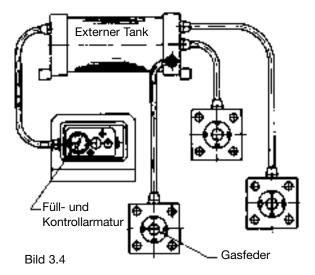
Bild 3.2

Speicherplattensystem

Für kompakte Speichersysteme werden Federungszylinder verwendet, die in die gebohrten Speicherplatten geschraubt werden. Alternativ ist es auch möglich die selben Zylinder mit einer zusätzlichen Grundplatte, Schläuchen und Speichertanks zu verbinden (siehe Bild 3.4).

Der normale Gasdruck beträgt üblicherweise 110 bar, während der Enddruck bei maximalem Kolbenhub 120 bar beträgt. Diese Systeme erzeugen Kräfte zwischen 3.3 und 200 kN pro Federungszylinder. Die Temperatur schwankt je nach Geschwindigkeit der Presse und Länge des Hubs und beträgt bis zu 40 °C.

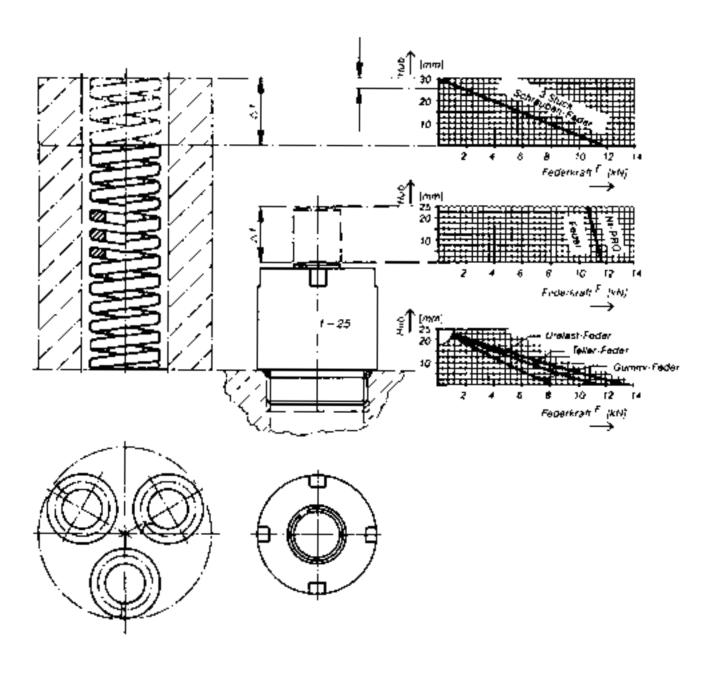

Der Stickstoff-Fülldruck und somit die Kraft des Kolben lassen sich leicht und schnell mittels der Füll- und Kontrollarmatur einstellen. Die Betriebssicherheit wird durch Verwendung von geprüften Tanks und Berstsicherungen gewährt.


Speicherplatten-Systeme bieten eine fast konstante Kraft während des gesamten Hubweges. Die gewünschte Kraft kann leicht durch Justieren des Gasdrucks erreicht werden.

Da alle Federungszylinder miteinander verbunden sind und somit dem gleichen Druck unterliegen, übt jeder Federungszylinder den gleichen Druck aus. Ein Leck im System bewirkt keine außermittige Belastung, was zu Qualitätseinbußen der Teile führen könnte.

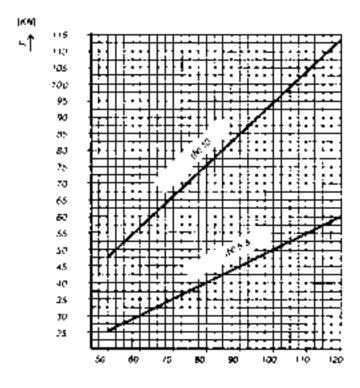
Das neue, von DANLY entwickelte kompakte Federungssystem bietet eine Reihe von zusätzlichen Eigenschaften, die bei der früheren Generation fehlten. Es gibt kein Lufteinlass, der Verschmutzungen ansaugen könnte, das System ist hermetisch abgedichtet. Eine Schmieranlage wurde in die Federkonstruktion integriert, die nicht nur den Verschleiss reduziert, sondern auch für Dichtigkeit und lange Lebensdauer der Dichtungen sorgt. Ferner kann bei diesem System Öl nachgefüllt werden, ohne den Federungszylinder auszubauen.

Externes Schlauch- und Speichersystem

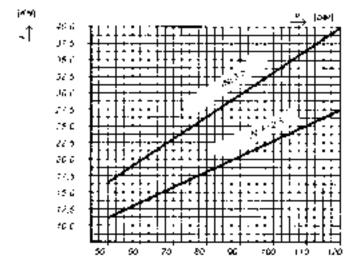

FEDERKENNLINIEN

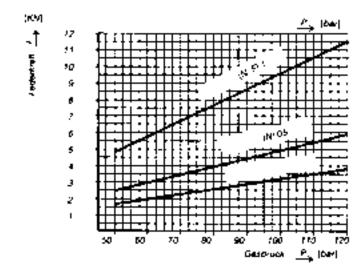
DANLY Federungszylinder = nahezu ideale Federrate - geringer Platzbedarf

Den Anwendungstechniker in der Konstruktionsabteilung und im Betrieb interessiert an einem Federsystem vor allem die Federrate und der erforderliche Platzbedarf. Das hier gezeigte und maßstäblich dargestellte Beispiel von Schraubendruckfedern zu DANLY Federungszylinder gilt für alle DANLY Federungszylinder. Erzielt wird eine Einsparung des Stellplatzes zugunsten der DANLY Federungszylinder von 50 bis 70 % verglichen mit anderen Federsystemen – nicht nur der Schraubendruckfeder.


Also höchste Kraftkonzentration auf kleinstem Raum.

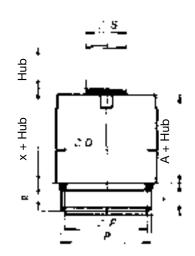
Aber erst der Vergleich der Federkennlinien und der umseitige Gasdruck-Federkraft-Diagramme zeigt die Überlegenheit der DANLY-Federungszylinder, wenn Sie Federungsaufgaben problemlos für Ihren Anwendungsfall lösen wollen.

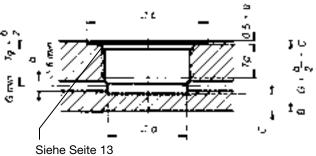




GASDRUCK-FEDERKRAFT-DIAGRAMME

In nebenstehenden Diagrammen ist die Federkraft [KN] über dem Gasdruck in bar dargestellt.





STANDARDFEDERUNGSZYLINDER TYP CDS

Tun	Nenn-	Bestell-		нив								
Тур	kraft kN	Nr.	5	12,5	15	20	25	38	50	75	100	150
CDS 0.3	3,3	ICDS003	*	012	*	*	025	038	050	075	100	*
CDS 0.5	5,0	ICDS005	*	012	*	*	025	038	050	075	100	*
CDS 1.0	10	ICDS010	*	*	015	020	025	038	050	075	100	*
CDS 2.5	25	ICDS025	*	*	*	*	025	038	050	075	100	-
CDS 3.5	35	ICDS035	005	*	*	*	025	038	050	075	100	150
CDS 5.5	55	ICDS055	*	*	*	*	025	038	050	075	100	150
CDS 10	100	ICDS100	*	*	*	*	025	038	050	075	100	150
CDS 20	200	ICDS200	*	*	*	*	*	*	050	*	*	*

Тур	A	X	ØD	Ød	ØL	ØF	ØS	T	R	Р	Tg	Øb min	C min
CDS 0.3	15,3	17,0	32	23	44	22,5	10	16	15	M27 x 2	20	6	6
CDS 0.5	18,8	20,5	42	32	50	31,5	12	15	15	M36 x 2	20	6	8
CDS 1.0	21,8	23,5	54	44	65	42,0	22	15,5	15	M48 x 2	20	6	10
CDS 2.5	21,8	23,5	70	60	80	59,5	28	17	15	M64 x 2	20	6	10
CDS 3.5	31,5	33,5	88	77	92	76,0	28	19,5	18	M80 x 2	23	8	10
CDS 5.5	36,5	38,5	108	96	112	95,0	40	25	20	M100 x 2	25	12	13
CDS 10	41,5	43,5	146	126	151	124,5	50	27	22	M130 x 2	30	12	16
CDS 20	48	53	193	171	196	170	70	35	30	M175 x 2	33	12	25

1 kN = 102 Kg

Bei Bestellung bitte folgendes angeben:

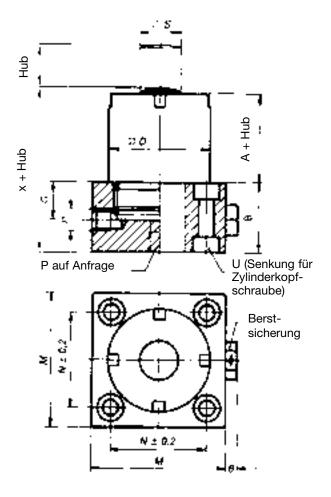
• Bestell-Nr.

Hubkennzahl

Bestellbeispiel:

CDS 1.0 x 75

ICDS010075


^{*} Hublänge auf Anfrage

AUF GRUNDPLATTE MONTIERTE FEDERUNGSZYLINDER TYP CDSP

Tun	Nenn-	Bestell-			Н	I U I	В		
Тур	kraft kN	Nr.	12,5	25	38	50	75	100	150
CDSP 0.3	3,3	ICDSP003	012	025	038	050	075	100	*
CDSP 0.5	5,0	ICDSP005	012	025	038	050	075	100	*
CDSP 1.0	10	ICDSP010	*	025	038	050	075	100	*
CDSP 2.5	25	ICDSP025	*	025	038	050	075	100	_
CDSP 3.5	35	ICDSP035	*	025	038	050	075	100	150
CDSP 5.5	55	ICDSP055	*	025	038	050	075	100	150
CDSP 10	100	ICDSP100	*	025	038	050	075	100	150
CDSP 20	200	ICDSP200	*	*	*	050	*	*	*

^{*} Hublänge auf Anfrage

Тур	А	X	В	ØD	ØS	G	P UNF	М	N	U
CDSP 0.3	15,3	45,5	28,5	32	10	18	1/2 - 20	51	35	KM8
CDSP 0.5	18,8	49,0	28,5	42	12	18	1/2 - 20	62	45	KM8
CDSP 1.0	21,8	58,5	35	54	22	20	1/2 - 20	70	54	KM8
CDSP 2.5	21,8	61,5	38	70	28	20	1/2 - 20	90	70	KM8
CDSP 3.5	31,5	76,5	43	88	28	25	3/4 - 16	108	78	KM10
CDSP 5.5	36,5	83,5	45	108	40	27	3/4 - 16	128	97	KM12
CDSP 10	41,5	103,5	60	146	50	39	3/4 - 16	156	124	KM16
CDSP 20	48	121,5	68,5	193	70	38,5	3/4 - 16	300	240	KM20

1 kN = 102 Kg

Bei Bestellung bitte folgendes angeben:

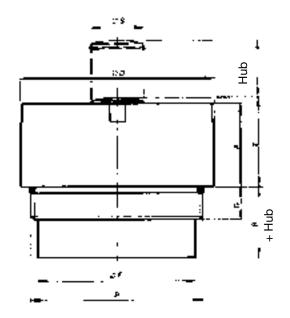
• Bestell-Nr.

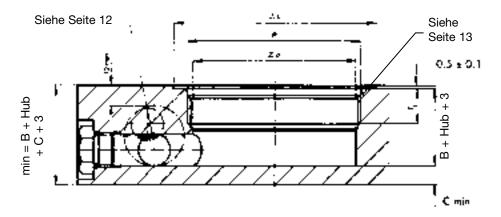
Hubkennzahl

• Gewinde "P" auf der Plattenunterseite auf Anfrage

Bestellbeispiel:

CDSP 5.5 x 50


ICDSP055050



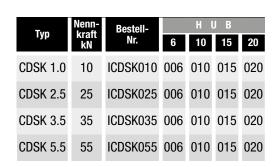
FEDERUNGSZYLINDER MIT NIEDRIGER BAUHÖHE TYP CDSN

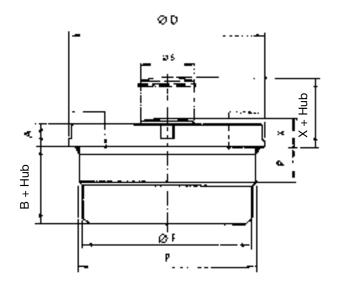
	Nenn-	Bestell-	II- H U B								
Тур	kraft kN		12,5	25	38	50	75	100	150		
CDSN 0.3	3,3	ICDSN003	012	025	038	050	075	100	*		
CDSN 0.5	5,0	ICDSN005	*	025	038	050	075	100	*		
CDSN 1.0	10	ICDSN010	*	025	038	050	075	100	150		
CDSN 2.5	25	ICDSN025	*	025	038	050	075	100	150		
CDSN 3.5	35	ICDSN035	*	025	038	050	075	100	150		
CDSN 5.5	55	ICDSN055	*	025	038	050	075	100	150		
CDSN 10	100	ICDSN100	*	025	038	050	075	100	150		

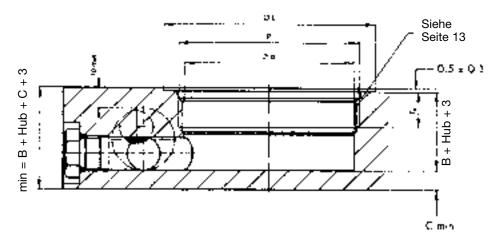
^{*} Hublänge auf Anfrage

Тур	A	В	Х	ØD	Ød	ØF	ØL	ØS	G	Р	Tg	C min
CDSN 0.3	18,3	13,0	20	32	24	23,5	44	10	15	M27 x 2	20	10
CDSN 0.5	40,5	-6,7	42	42	33	32,5	50	12	15	M36 x 2	20	10
CDSN 1.0	40,5	-3,2	42	54	44	42	65	22	15	M48 x 2	20	10
CDSN 2.5	40,5	-1,7	42	70	62	61	80	28	15	M64 x 2	20	10
CDSN 3.5	49,5	1,5	51,5	88	77	76	92	28	18	M80 x 2	23	10
CDSN 5.5	52,5	9,0	54,5	108	96	95	112	40	20	M100 x 2	25	13
CDSN 10	62,5	6,0	64,5	146	126	125	151	50	22	M130 x 2	30	16

1 kN = 102 Kg


Bei Bestellung bitte folgendes angeben:


- Bestell-Nr.
- Hubkennzahl


Bestellbeispiel: CDSN 2.5 x 100 ICDSN025100

FEDERUNGSZYLINDER IN FLACHBAUWEISE TYP CDSK

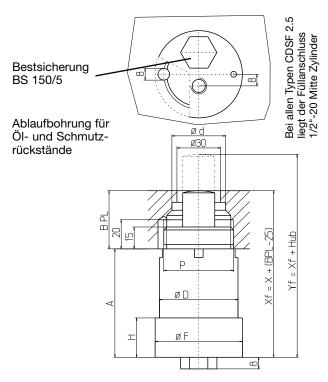
Тур	A	В	х	ØD	Ød	ØF	ØL	ØS	R	Р	Tg	C min
CDSK 1.0	10	22	11	54	44	42	65	18	18	M48 x 2	20	10
CDSK 2.5	10	24	12	70	62	61	80	28	17	M64 x 2	20	10
CDSK 3.5	14	31	16	88	77	75	92	28	19	M80 x 2	23	10
CDSK 5.5	14	31	16	108	96	95	112	40	19	M100 x 2	25	13

1 kN = 102 Kg

Bei Bestellung bitte folgendes angeben:

• Bestell-Nr.

Hubkennzahl


Bestellbeispiel:

CDSK 2.5 x 10

ICDSK025010

FEDERUNGSZYLINDER TYP CDSF

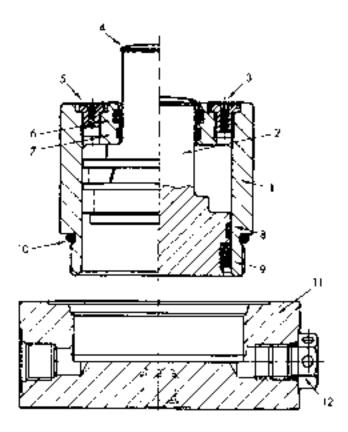
Тур	Fläche cm²	Nennkraft kN (bei 110 bar)	Bestell-Nr.	HUB	Α	Ø D	Ød	Ø F/H	ØΡ	ØΧ	ØΥ
CDSF 1.0			ICDSF01025	25	77,5					_	
CDSF 1.0	9,61	10,57	ICDSF01038	38	90,5	54	44	60/30	M48 x 2	ol-25)	
CDSF 1.0	9,01	10,57	ICDSF01050	50	102,5	54	44	00/30	IVI40 X Z	X+(Bpl-25)	X _f +Hub
CDSF 1.0			*	75	127,5					^	
CDSF 2.5			*	25	77,5					<u></u>	
CDSF 2.5	22,89	25,18	ICDSF02538	38	90,5	70	60	79/30	M64 x 2	pl-25	X _f +Hub
CDSF 2.5	22,00	25,10	*	50	102,5	70	00	73/30	WIOT X Z	X + (Bpl - 25)	×
CDSF 2.5			*	75	127,5					^	
CDSF 5.5			*	25	106,5					<u> </u>	
CDSF 5.5	50,24	55,26	ICDSF05538	38	119,5	108	98	118/45	M100 x 2	pl-25	X _f + Hub
CDSF 5.5	50,27	55,20	*	50	131,5	100	30	110/43	WITOU X Z	X+(Bpl-25)	*
CDSF 5.5			*	75	176,5					^	

^{*} Hublänge auf Anfrage 1 kN = 102 Kg

Bitte beachten: Wenn Bpl > 25 ist, muss Einbaulänge x um Bpl – 25 verlängert werden. Baugrößen von Typ CDSF 3.5 bis CDSF 10 sind Sonderanfertigungen. Zylinder mit Sonderhublängen bis 250 mm auf Anfrage lieferbar. Konstruktionsrichtlinien beachten.

Bei Bestellung bitte folgendes angeben:

• Bestell-Nr.


Bestellbeispiel: CDSF 1.0 x 25 ICDSF01025

ERSATZTEILE

Gasfedern unterliegen dem Verschleiß, den sie je nach Beanspruchung bzw. Arbeitsumfeld ausgesetzt sind. Schutz der Auflagenflächen des Zylinderkörpers und der Kolbenstange gegen Beschädigung, sowie regelmäßige Wartung (Öl nachfüllen) erhöhen die Lebensdauer der Gasfedern wesentlich.

Unter normalen Umständen sind lediglich die Dichtungen bei der Wartung zu ersetzen. Die demontierten Teile mit fusselfreien Reinigungstücher reinigen (keine Stofflappen) und sie bei sauberen Bedingungen wieder montieren.

POS.	TEILEBEZEICHNUNG
1	Zylindergehäuse*
2	Kolben*
3	Lüftungsventil
4	Sprengring
5	Schmiernippel
6	Schmutzabstreifer
7	Stangenführungsring
8	Kolbenführungsring
9	Kolbendichtung
10	O-Ring
11	Grundplatte (nur bei CDSP)
12	Berstsicherung (nur bei CDSP)

Bei Bestellung bitte folgendes angeben:

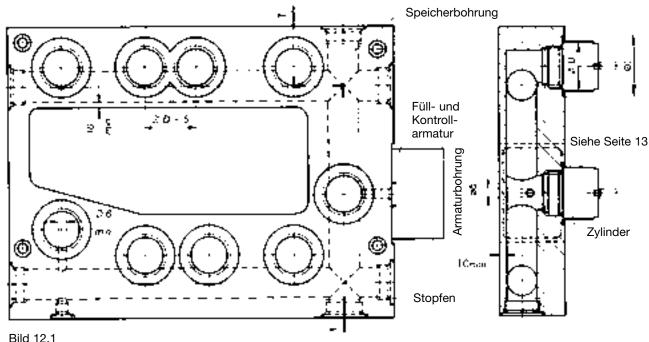
Dichtsatz (SK):

Der Dichtsatz besteht aus den Ersatzteilen (6) Schutzabstreifer, (7) Stangenführungsring, (8) Kolbenführungsring, (9) Kolbendichtung und (10) O-Ring.

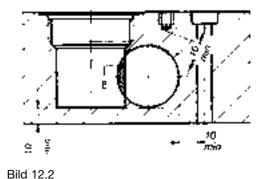
Zylindertyp, Nennkraft und SK angeben.

Bestellbeispiel: CDS 5.5 SK

Einzelne Ersatzteile:


Zylindertyp, Nennkraft, Position und Teilebezeichnung angeben.

Bestellbeispiel: CDSP 2.5 (7) Stangenführungsring


*Zylindergehäuse und Kolben werden nicht als Ersatzteile verkauft.

KONSTRUKTIONSRICHTLINIEN FÜR SPEICHERPLATTEN

- Speicherplatten nur aus ultraschallgeprüftem Stahl anfertigen, auf keinen Fall Gussplatten verwenden.
- Teile dürfen nicht an die Speicherplatte geschweißt werden. Nur Verschraubungen mit O-Ring verwenden.
- Überdeckung "B" der Verbindungsbohrung (siehe Bild 12.2) sollte mindestens 5 % des Querschnitts der größten Bohrung betragen bzw. mind. 1,5 cm≤. Bohrungsdurchmesser muss mindestens 6 mm betragen.
- Bohrungen sollten dort nicht als Sacklöcher ausgelegt werden, wo sich Schmutzpartikel ansammeln können (siehe Bild 12.3).
- Bei allen Plattendruchbrüchen oder sonstigen Bohrungen ist aus Sicherheitsgründen ein Mindestabstand von 10 mm von den Speicherbohrungen einzuhalten.
- Mittenabstand nebeneinander liegender Zylinder sollte dem Außendurchmesser + 5 m entsprechen.

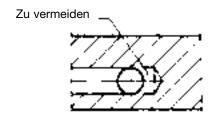
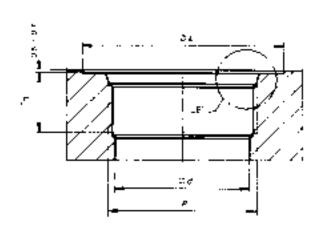
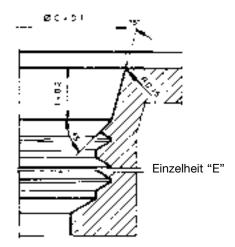
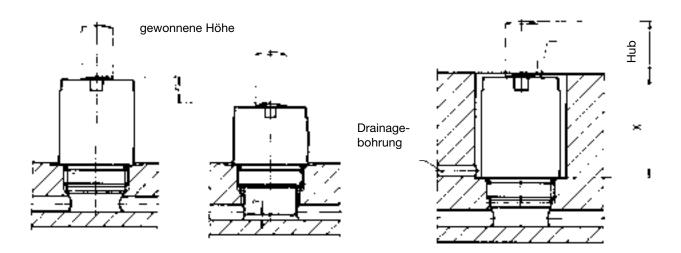
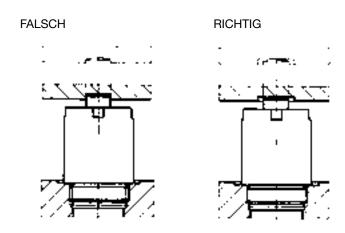




Bild 12.3

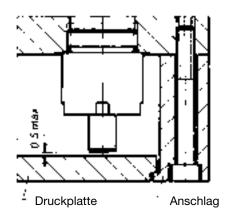
FERTIGUNGSDATEN FÜR GEWINDE UND DICHTSCHRÄGEN


Nur die absolut saubere und formgenaue Ansenkung der Dichtschräge für den O-Ring gewährleistet, in Verbindung mit einer satten Anlage zwischen den Kontaktflächen von Zylinder und Platte, die erforderliche Dichtigkeit. Die Formschräge sollte möglichst mit einem profilgeschliffenen Formsenker gefertigt werden.

Тур	Formsenker	Gewinde	P	Ø C + 0.1	Vorbohrung Ø d	Lineares Volumen cm ³ /cm	t±0.2	ØL	Tg
ZYLINDER									
0.3	FS 27	GB 27	M 27 x 2	28.9	24	4.15	3.5	44	20
0.5	FS 36	GB 36	M 36 x 2	37.9	33	8.55	3.5	50	20
1.0	FS 48	GB 48	M 48 x 2	49.9	44	15.20	3.5	65	20
2.5	FS 64	GB 64	M 64 x 2	65.9	62	30.19	3.5	80	20
3.5	FS 80	GB 80	M 80 x 2	83.2	77	46.57	4.4	92	23
5.5	FS 100	GB 100	M 100 x 2	103.0	96	72.38	4.4	112	25
10	FS 130	GB 130	M 130 x 2	133.2	126	124.69	4.4	151	30
VERSCHLUSS	STOPFEN								
V2 - 36	FS 36	GB 36	M 36 x 2	37.9	33	8.55	3.5	50	20
V2 - 42	FS 42	GB 42	M 42 x 2	43.9	39	11.95	3.5	58	20
V2 - 48	FS 48	GB 48	M 48 x 2	49.9	45	15.90	3.5	65	20
V2 - 64	FS 64	GB 64	M 64 x 2	65.9	60	28.27	3.5	80	20
V2 - 80	FS 80	GB 80	M 80 x 2	83.2	76	45.36	4.4	92	25
V2 - 100	FS 100	GB 100	M 100 x 2	103.2	96	72.38	4.4	112	25
V2 - 130	FS 130	GB 130	M 130 x 2	133.2	126	124.69	4.4	151	30
EXTERNE TAN	IKVERBINDUN	IGEN							
NP 77-5	TCT 5	GB 1/2" .20	1/2" .20	14.0	10	-	2.5	25	15
NP 77-8	TCT 8	GB 3/4" .16	3/4" .16	20.6	16	-	2.7	34	15

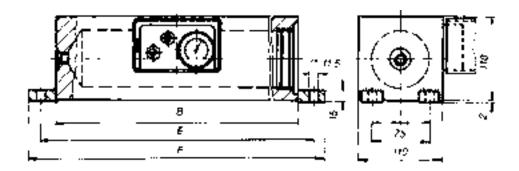

KONSTRUKTIONSRICHTLINIEN FÜR SPEICHERPLATTEN

Um die Dichtigkeit der Speichertankplatte sicherzustellen, ist es unbedingt erforderlich, dass der Sitz der O-Ringe der Zylinder und Stopfen frei jeglicher Markierung bzw. Kratzer ist. Einen profilgeschliffenen Formsenker der richtigen Größe verwenden, um den erforderlichen Oberflächenzustand zu erreichen (siehe Seite 13).



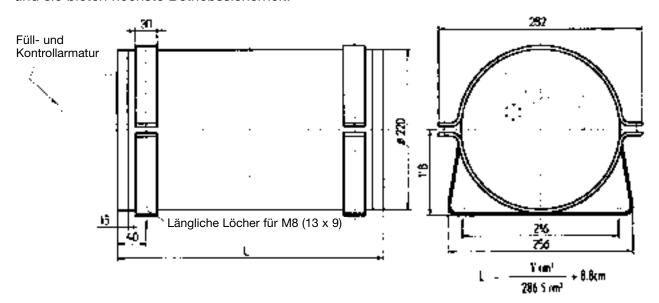
Sofern der Platz es zulässt, kann die Werkzeughöhe durch Verwendung von Federungszylindern mit niedriger Bauhöhe bzw. in Flachbauweise verringert werden.

Wenn die Federungszylinder in der Speicherplatte eingebaut sind, muss ein Drainageloch im Bohrungsgrund angebracht werden, um das Ansammeln von Öl und anderen Schmutzpartikel zu vermeiden.


Seitliches Einklemmen der Kolbenstange wird die Lebensdauer der Federungszylinder dramatisch reduzieren. Die Kolbenstange muss seitlich frei bleiben.

Bei Einbauanlagen muss der maximale Abstand bei geöffnetem Werkzeug zwischen Platte und Kolbenstange 0,5 mm betragen. Die Druckplatte sollte immer während des Hubweges geführt werden.

GEBOHRTE SPEICHERTANKS TYP NPT 102 - NPT 103



Тур	Volumen in Liter	Bestell- Nr.	В	E	F
NPT 102	0,52	INPT102	160	200	230
NPT 103	1,15	INPT103	300	340	370

Fügen Sie der Bestellung eine Skizze bei, woraus die Position der Berstsicherung und der Gewindelöcher ersichtlich ist.

SPEICHERTANKS MIT SCHRAUBDECKEL TYP TDNR (BIS ZU 20 LITERN)

Externe Speichertanks werden benötigt a) wenn das Speicherplattenvolumen nicht ausreicht, um den Druckanstieg auf 10 % einzuschränken oder b) wenn auf Platte montierte Federungszylinder eingesetzt werden. Speichertanks mit Schraubdeckel sind schnell zu einem wettbewerbsfähigen Preis hergestellt und sie bieten höchste Betriebssicherheit.

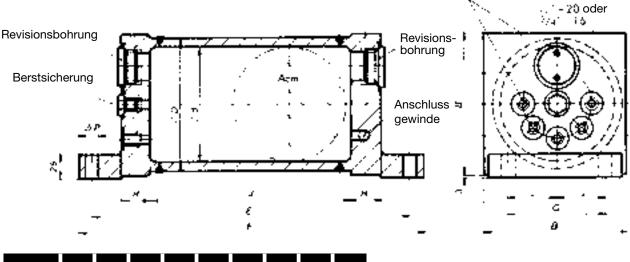
Die Verschraubungen und die Kontrollarmatur können nur am Schraubdeckel befestigt werden. Eine Berstsicherung Ω " - 20 BS 150 muss pro 5 Liter Gasvolumen eingesetzt werden. Falls die Kontrollarmatur am Tank befestigt wird, wird deren interne Berstsicherung mit berücksichtigt.

Bei Bestellung bitte folgendes angeben:

Bestellbeispiel:

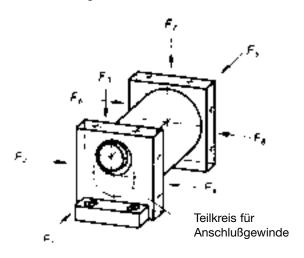
Bestellkennzeichen

TDNR 10


• Volumen in Liter

TÜV-GEPRÜFTE SPEICHERTANKS TYP NPT 5 - NPT 10 (BIS ZU 100 LITERN), GESCHWEISST NACH KUNDENSPEZIFIKATION

Diese Speichertanks sollten zum Einsatz kommen, wenn ein höheres Gasvolumen bzw. ein Speichertank mit kleineren Maßen erforderlich ist. Die aufgezeigte Anordnung der Revisionsbohrungen und Gewinde dient lediglich als Beispiel.


Anschlussgewinde

Тур	A cm ²	В	Н	ØD	Ød	E	F	G	ØР
NPT 5	108,8	150	40	139,7	117,7	J+140	J+170	100	14
NPT 8	285,0	225	40	219,1	190,7	J+160	J+200	180	18
NPT 10	655,2	350	45	323,9	288,9	J+170	J+210	280	18

$$J = \frac{Tankvollumen}{\Delta}$$

Wie bei den Speichertanks mit Schraubdeckel muss eine Berstsicherung ½" - 20 BS 150 pro 5 Liter Gasvolumen eingesetzt werden. Die maximale Anzahl von Anschlussgewinden pro Seite wird in folgender Zeichnung und Tabelle definiert.

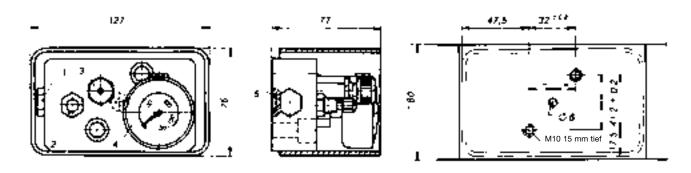
VERBINDUNGEN

T	NP	T 5	NP.	T 8	NPT 10		
Іур	1/2" -20	3/4" -16	1/2" -20	3/4" -16	1/2" -20	3/4" -16	
F1	8	5	9	9	20	20	
F2, 3, 4	2	•	2	2	5	5	
F5	8	5	9	9	20	20	
F6, 7, 8	2	•	2	2	5	5	

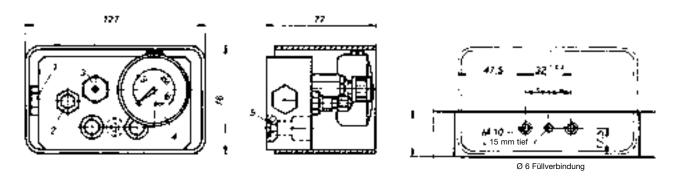
Bei Bestellung bitte folgendes angeben:

- Bestellkennzeichen und erforderliches Volumen
- Nummer, Größe und Position der Verbindungen

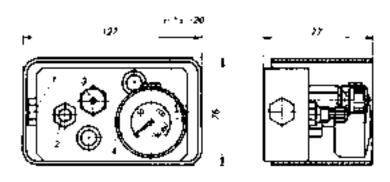
Bestellbeispiel:

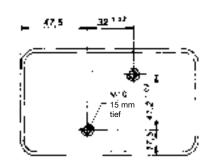

- (1) NPT 8 10 Liter
- (2) 1/2" 20 bei F1
- (1) ³/₄" 16 bei F≥

KONTROLLARMATUREN


Typ KA 110.01 - 80 zum Anbau an Speicherplatten ≥ 80 mm und an externe Tanks

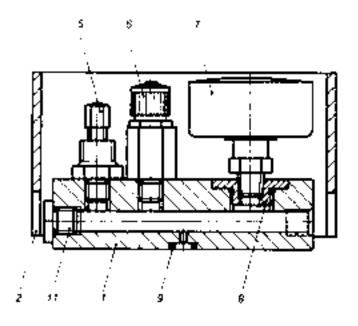
Lochbild der Befestigungs- und Füllbohrungen

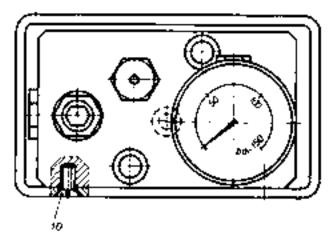

Typ KA 110.01 - 32 zum Anbau an Speicherplatten ≥ 32 mm


Lochbild der Befestigungs- und Füllbohrungen

Typ KA 110.01 wird verwendet, wenn keine Befestigungsmöglichkeit für die Kontrollarmatur an der Speicherplatte oder am externen Tank besteht.

Lochbild der Befestigungsbohrungen


- 1. Berstsicherung
- 2. Einlassventil
- 3. Auslassventil


- 4. Manometer
- 5. O-Ring

Alle Kontrollarmaturen auch mit Schnellverschlussadapter (-QD) lieferbar!

ERSATZTEILE FÜR KONTROLLARMATUREN

Kenn-	Bezeichnung	ARMATURTYPEN					
nummer	Dezelomung	KA 110.01	KA 110.01-32	KA 110.01-80			
1	Armaturkörper	*	*	*			
2	Schutzgehäuse	*	*	*			
5	Einlassventil	IKA0500	IKA0500	IKA0500			
6	Auslassventil	IKA0600	IKA0600	IKA0600			
7	Manometer	IKA07	IKA07	IKA07			
8	Adaptor	IKA08	IKA08	IKA08			
9	0-Ring	-	*	*			
10	Schrauben (2 Stück)	M6 x 10	M6 x 10	M6 x 10			
11	Berstsicherung	IBS1505	IBS1505	IBS1505			

^{*} Ersatzteile werden nicht einzeln verkauft.

VOLUMENBERECHNUNG

Der Druck im System sollte sich nicht um mehr als 10% erhöhen. Diese Vorgabe und das gesamte Verdrängungsvolumen der im Einsatz befindlichen Zylinder bestimmen das in den Speicherbohrungen der Speicherplatten bzw. im Speichertank erforderliche Gasvolumen.

Formeln

Beispiel: (10) CDS 2.5 x 50

1.
$$Vcyl = n \times Acyl \times Hub$$

$$Vcyl = 10 \times 22,89 \text{ cm}^2 \times 5 \text{ cm}$$

$$=$$
 1144,5 cm³

2.
$$V_1 = \frac{\text{Vcyl } (100\% + \Delta p)}{\Delta p}$$

$$V_1 = \frac{1144,5 \text{ cm}^3 \text{ x } (100\% + 10\%)}{10\%}$$

$$=$$
 12,589,5 cm³ = 12,59 Liter

3.
$$V_2 = V_1 - Vcyl$$

$$V_2 = 12,589,5 \text{ cm}^3 - 1144,5 \text{ cm}^3$$

$$=$$
 11,445 cm³ = 11,45 Liter

Bei der Auslegung der Speicherplatte sollte der größt möglichste Speicherbohrungsdurchmesser gewählt werden (siehe Seite 12).

4.
$$L_B = \frac{V_2}{A_B}$$

Beispiel: Speicherbohrungsdurchmesser 40 mm

$$L_B = \frac{11,445 \text{ cm}^3}{12,57 \text{ cm}^2}$$
= 910.5 cm

Falls das Gasvolumen in der Speicherplatte nicht ausreicht oder falls auf Platte montierte Federungszylinder eingesetzt sind, wird ein externer Speichertank notwendig (siehe Seiten 15-16).

Sollte das Ausgangsvolumen bekannt sein, kann der Druckanstieg wie folgt berechnet werden:

5.
$$p_1 V_1 = p_2 V_2$$

6.
$$\Delta p = \frac{(p_2 - p_1) \times 100\%}{p_1}$$

V₁ = Anfangsvolumen bei geöffnetem Werkzeug

V₂ = Volumen bei geschlossenem Werkzeug

= Speichertankplatten-/Tank-Volumen

V_{cyl} = Verdrängungsvolumen der im Einsatz

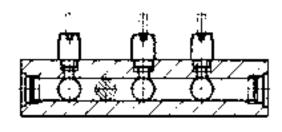
befindlichen Zylinder

 p_1 = Druck bei geöffnetem Werkzeug

p₂ = Druck bei geschlossenem Werkzeug

 Δp = Druckanstieg in %

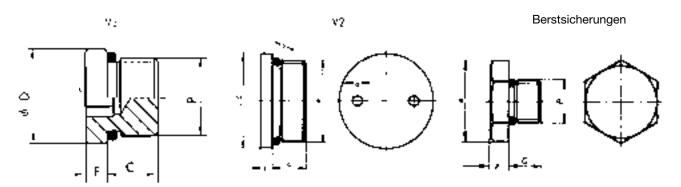
n = Anzahl von Zylindern


Acyl = Kolbenfläche

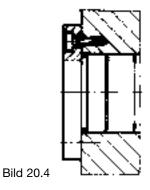
L_B = Länge der Bohrung

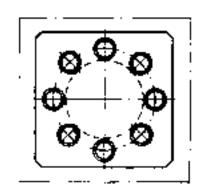
A_B = Querschnitt der Bohrung

Тур	Acylcm ²	Nennkraft kN	Aussen-Ø mm	Kolben- stangen- Ø mm	HUB mm
0.3	3,14	3,4	32	10	12.5-100
0.5	4,90	5	42	12	12.5-100
1.0	9,61	10	54	22	25 - 150
2.5	22,89	25	70	28	25 - 200
3.5	33,16	35	88	28	25 - 250
5.5	50,24	55	108	40	25 - 250
10	94,98	104	146	50	25 - 300
15	132,66	150	168	60	25 - 300
20	182,41	200	193	70	25 - 150


Speicherbohrungs-Ø mm	Fläche A _B cm ²	Speicherbohrungs-Ø mm	Fläche A _B cm ²		
10	0,79	45	15,90 28,27		
12	1,13	60			
16	2,01	75	44,17		
22	3,80	90	63,62		
25	4,91	100	78,54 95,03		
33	8,55	110			
40	12,57	120	113,10		

← A_k

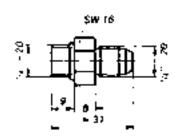

VERSCHLUSSSTOPFEN UND BERSTSICHERUNGEN

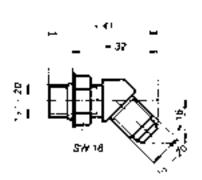


WICHTIG: Die Verschlussstopfen nicht an die Platte anschweißen.

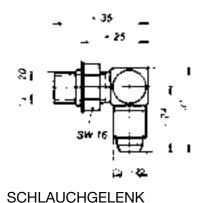
Тур	P Gewinde	Bestell- Nr.	C	F	Ød	Ø D	е	O-Ring Ø D x Ø S	Für max. gebohrten Durchmesser
VERSCHLUSS	STOPFEN .								
NP 77-5	1/2" - 20	INP775	11	8	-	SW17	-	-	10
NP 77-8	3/4" - 16	INP778	11	9	-	SW22	-	-	16
V3 - 14	M 14 x 1,5	IV314	12	5	-	19	-	-	12
V3 - 20	M 20 x 1,5	IV320	14	5	-	26	-	-	18
V3 - 27	M 27 x 2	IV327	16	5	-	32	-	-	24
V2 - 36	M 36 x 2	IV236	15	5	4,1	42	-	32 x 3	33
V2 - 42	M 42 x 2	IV242	15	5	4,1	48	-	38 x 3	39
V2 - 48	M 48 x 2	IV248	15	5	4,1	54	-	44 x 3	45
V2 - 64	M 64 x 2	IV264	15	5	4,1	70	-	60 x 3	60
V2 - 80	M 80 x 2	IV280	20	10	6,1	88	-	76 x 4	76
V2 - 100	M 100 x 2	IV2100	20	10	6,1	108	-	96 x 4	96
V2 - 130	M 130 x 2	IV2130	25	10	8,1	145	-	126 x 4	126
BERSTSICHER	RUNGEN								
BS 150-5	1/2" - 20	IBS1505	11	8	-	SW17	19,5	9 x 2	10
BS 150-11	M20 x 1,5	IBS15011	15	10	-	SW19	27,0	17 x 2,5	16
BS 170-5	1/2" - 20	IBS1705	11	8	-	SW17	19,5	9 x 2	10
BS 190-5	1/2" - 20	IBS1905	11	8	-	SW17	19,5	9 x 2	10
BS 250-5	1/2" - 20	IBS2505	11	8	-	SW17	19,5	9 x 2	10

Gebohrte Durchmesser > 126 mm sollten mit einer Platte und O-Ringe (siehe Bild 20.4) versehen werden. Anzahl, Qualität und Vorlast der Schrauben müssen für einen Druck von 165 bar (maximalen Druck der Berstsicherungen), einen Sicherheitsfaktor von 1,5 und eine Dauerbeanspruchung spezifiziert sein.

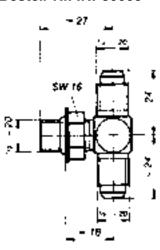


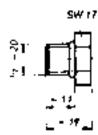


VERSCHRAUBUNGEN UND SCHLÄUCHE GRÖSSE 5

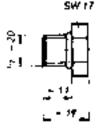

GERADER ANSCHLUSS Bestell-Nr. INP10005

ELLENBOGENANSCHLUSS 45° Bestell-Nr. INP45005

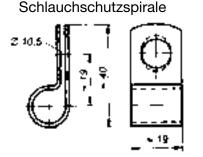

ELLENBOGENANSCHLUSS 90° Bestell-Nr. INP20005


(Schraubarmatur)

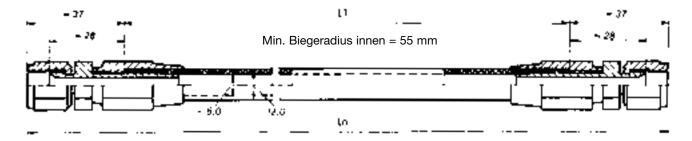
Bestell-Nr. INPG5S


T-STÜCK Bestell-Nr. INP30005

VERSCHLUSSSTOPFEN Bestell-Nr. INP775



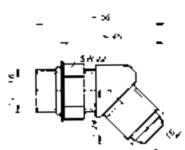
SCHLAUCHCLIPS (Schraubarmatur) Bestell-Nr. INPC5SMS mit Schlauchschutzspirale Bestell-Nr. INPC5SOS ohne


SCHLAUCHSCHUTZSPIRALE (Schraubarmatur) Bestell-Nr. INPS5S

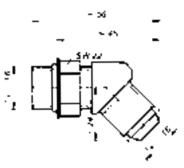
SW 11

SCHLAUCH komplett mit Schlauchschutzspirale SCHLAUCH komplett ohne Schlauchschutzspirale Bestell-Nr. INP1215PSXX + Angabe der Schlauchlänge Lo Bestell-Nr. INP1215PXX + Angabe der Schlauchlänge Lo

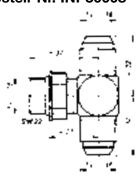
Falls Lo weniger als 300 mm beträgt, muss der Schlauch vom Kunden auf die exakte Länge gekürzt werden. Ein Schlauchgelenk wird lose mitgeliefert.

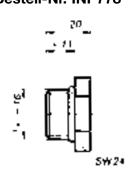

ELLENBOGENANSCHLUSS 45°

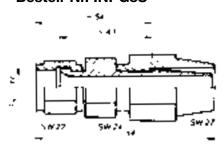
Bestell-Nr. INP45008

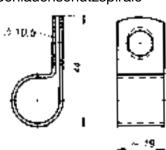

VERSCHRAUBUNGEN UND SCHLÄUCHE GRÖSSE 8

GERADER ANSCHLUSS


Bestell-Nr. INP10008

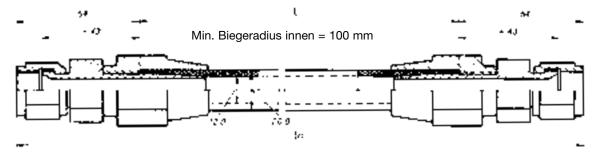

ELLENBOGENANSCHLUSS 90° Bestell-Nr. INP20008


T-STÜCK Bestell-Nr. INP30008


VERSCHLUSSSTOPFEN Bestell-Nr. INP778

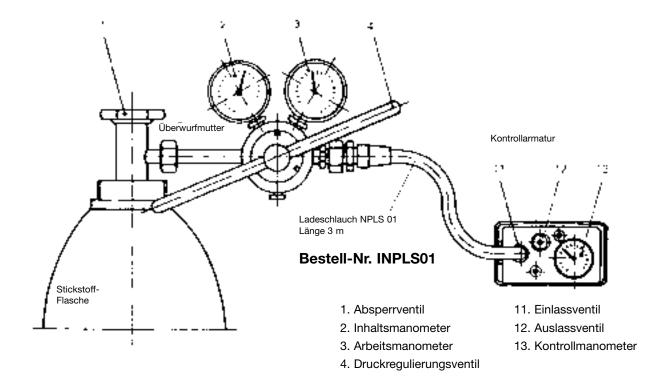
SCHLAUCHGELENK (Schraubarmatur) Bestell-Nr. INPG8S

SCHLAUCHCLIPS (Schraubarmatur) Bestell-Nr. INPC8SMS mit Schlauchschutzspirale Bestell-Nr. INPC8SOS ohne Schlauchschutzspirale



SCHLAUCHSCHUTZSPIRALE (Schraubarmatur)

Bestell-Nr. INPS8


SCHLAUCH komplett mit Schlauchschutzspirale SCHLAUCH komplett ohne Schlauchschutzspirale Bestell-Nr. INP1218PSXX + Angabe der Schlauchlänge Lo Bestell-Nr. INP1218PXX + Angabe der Schlauchlänge Lo

Falls Lo weniger als 400 mm beträgt, muss der Schlauch vom Kunden auf die exakte Länge gekürzt werden. Ein Schlauchgelenk wird lose mitgeliefert.

FLASCHENDRUCKMINDERER NPA 110.01

Bestell-Nr.

INPA11001-200 Flaschendruckminderer NPA 110.01 200 bar INPA11001-300 Flaschendruckminderer NPA 110.01 300 bar

Ladeanleitungen:

- 1. Abfüllarmatur mittels Überwurfmutter an die Stickstoff-Flasche anschließen.
- 2. Abfüllarmatur mit dem Ladeschlauch an die Kontrollarmatur (Schlauch separat bestellen) verbinden.
- 3. Auslassventil (12) schließen.
- 4. Absperrventil (1) vorsichtig öffnen. Der Inhaltsmanometer zeigt den Druck im Inneren der Flasche an
- 5. Druckregulierungsventil (4) öffnen bzw. schließen, bis Arbeitsmanometer (3) den erforderlichen Druck anzeigt.
- 6. Das Drucksystem füllt sich langsam, so dass Sie genügend Zeit haben, das Druckregulierungsventil auf den richtigen Druck einzustellen. Sobald der Speicherplattendruck dem des Arbeitsdruckes gleicht, ist das System geladen.
- 7. Absperrventil (1) schließen.
- 8. Schlauch vom Einlassventil entfernen.

"Ihr Partner in der Stanztechnik"

Unsere Fertigungs- und Vertriebsniederlassungen :

Deutschland • Frankreich • Belgien • England • Schweden • Niederlande USA • Singapur

DANLY DEUTSCHLAND GmbH

Daimlerstraße 29, DE 78083 Dauchingen Tel. + 49 (0) 77 20 / 97 23 - 0 Fax + 49 (0) 77 20 / 97 23 - 50 E-Mail: info@danly.de www.danly.de